

2nd Postgraduate Research Symposium on Ferrous Metallurgy

TRIP/TWIP steels produced by additive layer manufacturing

Hossein Eskandari Sabzi

Doctor Bij-Na Kim Lee Doctor Wei Wen Professor Pedro Rivera-Diaz-del-Castillo Engineering Department of Lancaster University

26 February 2019

The aim of this work

PhD project

Provide powder and ALM facilities

316 stainless steel

High Mn austenitic steels

Thermodynamic modelling

Microstructure evolution, redesign and plasticity modelling of TRIP/TWIP steels for ALM

Microstructure evolution, redesign and plasticity modelling of TRIP/TWIP titanium alloys for ALM

TRIP/TWIP in steels

Orientation dependency of TRIP/TWIP

Sabzi, H. Eskandari, et al. Mater Sci Eng A (2018).

Additive layer manufacturing (ALM)

Wang, Xianglong, et al. Mater Sci Eng A 736 (2018): 27-40.

F. Kies et al. / Materials and Design 160 (2018) 1250–1264

Sun et al. NPG Asia Materials (2018) 10: 127–136.

Issues in ALM

Sun, Zhongji, et al. NPG Asia Mater (2018): 1.

Pham, Minh-Son, and Paul Hooper. AIP Conference Proceedings. Vol. 1896. No. 1. AIP Publishing, 2017.

Sun, Zhongji, et al. NPG Asia Mater (2018): 1.

High amounts of low angle grain boundaries Cellular microstructure High dislocation density

Using computational methods

- Melt pool geometry
- Effect of processing parameters on defects (porosity and residual stresses)
- Texture evolution prediction
- Microstructural evolution
- Modelling yield strength
- Plasticity model for TWIP after deformation

ALMed high Mn austenitic steels

Haase, Christian, et al. Materials 10.1 (2017): 56.

ALMed high Mn austenitic steels

14

ALMed high Mn austenitic steels

sample	Fe	C (wt%)	Mn (wt%)	Al (wt%)	SFE (mJ/m2)
Steel powder	Bal.	0.33	21.9	0.01	-
LMD0.0	Bal.	0.27	23.1	<0.005	16.4
LMD0.9	Bal.	0.32	23.6	0.92	25.9
LMD1.7	Bal.	0.32	23.6	1.71	31.2
LMD2.0	Bal.	0.32	23.8	1.97	33.3

Kies, Fabian, et al. *Mater. Des.* 160 (2018): 1250-1264.

Aluminium (wt%)

Forthcoming research

Using computational methods

- Redesign printable high Mn austenitic steels
- Melt pool geometry
- Effect of processing parameters on defects (porosity and residual stresses)
- Texture evolution prediction (lowering anisotropy)
- Microstructural evolution
- Modelling and optimisation of yield strength
- Plasticity model for TRIP and TWIP after deformation

Thank you for your attention

Contact

h.eskandarisabzi@lancaster.ac.uk